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The formation of spatially localized patterns in a system with subcritical instability under feedback control
with delay is investigated within the framework of globally controlled Ginzburg-Landau equation. It is shown
that feedback control can stabilize spatially localized solutions. With the increase of delay, these solutions
undergo oscillatory instability that, for large enough control strength, results in the formation of localized
oscillating pulses. With further increase of the delay the solution blows up.
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I. INTRODUCTION

Various nonlinear extended systems are subject to satu-
rable monotonic short-wave �“Turing”� instabilities leading
to the formation of stationary patterns �1–3�. The most well
know examples are Rayleigh-Bénard convection and Turing
patterns in reaction-diffusion systems. In the one-
dimensional case, the generic equation governing the pattern
envelope �amplitude� function A�x , t� is the Ginzburg-
Landau equation

�A

�t
= �A + D

�2A

�x2 − ��A�2A , �1�

with real coefficients �, D�0, and ��0. In the subcritical
region, ��0, the solution A=0 corresponding to the equi-
librium state is stable. In the supercritical region, the time
evolution of the amplitude function is characterized by a
monotonic decrease of a Lyapunov functional �“Ginzburg-
Landau free energy”� and asymptotically leads to a stable
stationary spatially periodic solution with a wavenumber
within the Eckhaus stability interval �4�, k2�� / �3D�. Other
kinds of stationary solutions, such as spatially localized and
quasiperiodic solutions, are unstable. This provides the ex-
planation of the formation of ordered patterns from disor-
dered initial conditions.

Some nonlinear systems exhibit nonsaturable �subcritical�
instabilities, corresponding to the case ��0 in Eq. �1�. In
this case, the Lyapunov functional is not bounded from be-
low, and the solution of Eq. �1� blows up in a finite time. Of
course, the description of the underlying physical problem by
means of the weakly nonlinear equation �1� fails in this case.
However, the blow-up of solutions can be prevented by a
nonlinear feedback control. An example of such a control,
which leads to the following modification of the Ginzburg-
Landau equation

�A

�t
= �� − K�A��A + D

�2A

�x2 − ��A�2A , �2�

where K�A�= p maxx�A�x , t��, p�0, has been considered in
Ref. �5�, where it was applied for modeling the suppression

of a morphological instability of a solidification front. It was
shown that the stability properties of stationary solutions of
Eq. �2� significantly differed from those of Eq. �1�. All the
spatially-periodic solutions of Eq. �1� turned out to be un-
stable, while the only stable solution observed in numerical
simulations corresponded to a localized one.

Usually, in systems with feedback control, there is a delay
between the measurement of the system parameters by sen-
sors and the application of control action by actuators. In
some systems this delay is small and can be neglected. The
analysis described above is valid for this case. In the present
paper, we consider the general case when a delay in feedback
control is present. Thus, we consider a more general nonlin-
ear control, K�A�= p maxx�A�x , t−���, p�0 where �=const is
the control delay. Obviously, the stationary solutions of Eq.
�2� are not affected by the delay. However, the control delay
may change the stability properties of solutions and create
new dynamic regimes.

The paper is organized as follows. In Sec. II, we present
stationary localized solutions for Eqs. �1� and �2�. In Sec. III,
we perform the linear stability analysis of these solutions.
We will show that the localized solutions are unstable in the
absence of control, while in the presence of an undelayed
control there can exist two branches of solutions, one of
which is always stable and another one is unstable. We will
also show that the delay of control may lead to an oscillatory
instability of the localized solutions, and find the linear sta-
bility boundary ��p�. Section IV is devoted to nonlinear
simulations of finite-amplitude pulse oscillations. Section V
contains concluding remarks.

II. STATIONARY LOCALIZED SOLUTIONS

For ��0, upon rescaling, one can rewrite Eq. �2� as

�A

�t
= �s − K�A��A +

�2A

�x2 + �A�2A , �3�

where
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s = sgn���, K�A� = p max
x

�A�t − ��� ,

without a loss of generality.
Equation �3� has a stationary localized solution

A�x� = A0�x� = R�x − x0�ei�, �4�

where x0 and � are arbitrary constants,

R�y� = �2k�q�sech�k�q�y�, − � � y � � , �5�

and k�q� is a positive root of the quadratic equation

k2 − 2kq + s = 0, q = p/�2. �6�

In the subcritical region, s=−1, there exists only one so-
lution branch

k�q� = q + �q2 + 1, − � � q � � . �7�

Specifically, for q=0, i.e., in the absence of control, the lo-
calized solution has the form

R�y� = �2 sech y, − � � y � � . �8�

In the supercritical region, s=1, there are two branches of
solutions

k�q� = q ± �q2 − 1, q 	 1. �9�

Note that for any localized solution the effective linear
growth rate


0 = s − K�A0� = s − 2qk�q� = − �k�q��2 � 0 �10�

in the whole region of the localized solution existence.

III. STABILITY OF LOCALIZED SOLUTIONS

A. Formulation of the problem

Obviously, the stability of a localized solution does not
depend on x0 and �. Below, we set x0=�=0, and consider
real A0�x�=R�x�. In order to investigate the stability, we con-
sider the evolution of a disturbance on the background of the
stationary solution. Linearizing Eq. �3� around the localized
solution �4�,

A�x,t� = A0�x� + Ã�x,t� , �11�

we find

�Ã�x,t�
�t

=
�2Ã�x,t�

�x2 + �s − 2qk�q� + 2A0
2�x��Ã�x,t�

+ A0
2�x�Ã*�x,t� − 2qk�q�Re Ã�0,t − �� . �12�

It is assumed that �Ã�x , t�� is bounded for x→ ±�. Define

Ã�x , t�= Ãr�x , t�+ iÃi�x , t�, where Ãr and Ãi are real functions.

The problems for Ãr and Ãi are decoupled:

�Ãr�x,t�
�t

=
�2Ãr�x,t�

�x2 + �s − 2qk�q� + 3A0
2�x��Ãr�x,t�

− 2qk�q�Ãr�0,t − �� , �13�

�Ãi�x,t�
�t

=
�2Ãi�x,t�

�x2 + �s − 2qk�q� + A0
2�x��Ãi�x,t� . �14�

Here,

A0�x� = �2k�q�sech�k�q�x� .

Introduce a new coordinate z�k�q�x and consider normal
modes

Ãr�x,t� = u�z�e
t, Ãi�x,t� = v�z�e
t.

Taking into account relation �6�, one obtains an equation
which is valid in both subcritical and supercritical cases:

k2u� + �− k2 − 
 +
6k2

cosh2 z
	u = 2kq

u�0�e−
�

cosh z
;

�u � �, z → ± � , �15�

k2v� + �− k2 − 
 +
2k2

cosh2 z
	v = 0; �v� � �, z → ± � ,

�16�

where a prime means the differentiation with respect to z.
The problem �15� describes amplitude disturbances of the
localized solution, while Eq. �16� describes its phase distur-
bances.

B. Phase disturbances

Let us start with the problem �16�. Rewrite it as

− v� + �1 − 2 cosh−2 z�v = − �
/k2�v, �v� � �, z → ± � ,

�17�

to obtain the well-known eigenvalue problem for the
Schrödinger equation, which is exactly solvable �see, e.g.,
Ref. �6� or �7��. The continuum spectrum of the problem is
−�
 /k2��1, hence, it does not produce any instability. The
only discrete eigenvalue is 
=0, with the eigenfunction

v�z� = sech z ,

which corresponds to an infinitesimal change of � in Eq. �4�.

C. Amplitude disturbances

In the present subsection, we analyze the nonlocal eigen-
value problem �15�.

1. Stability in the absence of the control

In the case q=0 �no control�, the localized solution exists
only in the subcritical region, s=−1, and is described by Eqs.
�4� and �5� with k=1. The eigenvalue problem �15� can be
written as

− u� + �1 − 6 sech2 z�u = − 
u; �u� � �, z → ± � .

�18�

Again, the continuum spectrum of the problem is located at

�−1 and does not produce any instability. The discrete
spectrum includes two eigenvalues �6,7�
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 = 0, u = sinh z sech2 z ,


 = 3, u = sech2 z .

The first mode corresponds to a translation of the local-
ized solution �an infinitesimal change of x0 in Eq. �4��. The
second mode results in the instability of the subcritical local-
ized solution in the absence of control.

2. Stability in the presence of the control

Now consider Eq. �15� in the case when control is present,
q�0. Obviously, 
�−k2�0 for any disturbances which do
not decay as z→�. Hence, for the stability analysis it is
sufficient to consider localized solutions with Re
�−k2.
Due to the symmetry of Eq. �15�, any eigenfunctions can be
represented by either even or odd functions of z. For odd
eigenfunctions u�0�=0 and one returns to the uncontrolled
case discussed above. Therefore, later on we consider only
even solutions of Eq. �15�.

a. Analytical solution of the linear stability problem. One
can fix the norm of the eigenfunction u�z� by the condition
u�0�=1, and present the eigenvalue problem in the form

u� + � 6

cosh2 z
− r2	u = m

exp��1 − r2��/�m − 1��
cosh z

,

− � � z � � , �19�

�u� → 0, z → ± � , �20�

where

r2 =

 + k2

k2 , m =
s + k2

k2 .

According to Eq. �7�, in the subcritical region s=−1,

m =
2q

q + �q2 + 1
.

Hence, 0�m�1 for the stabilizing control �q�0�, and −�
�m�0 for the destabilizing control �q�0�. In the super-
critical region s=1,

m =
2q

q ± �q2 − 1
,

where q	1 �see Eq. �9��. One can see that 1�m�2 for the
upper branch and 2�m�� for the lower branch. Thus, the
stability of localized solutions in all the cases mentioned in
Sec. II can be studied using of Eq. �19�.

The eigenvalue 
 is above the continuous spectrum if
Re�r2��0. The instability corresponds to
Re�r2��1.

The general solution of Eq. �19� can be written as

u�z� = u0�z� + up�z� ,

where u0 is the general solution of the homogeneous equa-
tion and up is a particular solution of the inhomogeneous

equation. Since we are interested only in even solutions of
the problem, it is sufficient to consider the region
0�z��.

The general solution of the homogeneous equation is

u0�z� = C+
hP2

r�tanh z� + C−
hP2

−r�tanh z� , �21�

where Pn
m�x� denotes the associated Legendre polynomial.

The particular solution of the inhomogeneous equation can
be found using variation of parameters, which gives

u0�z� = C+
i �z�P2

r�tanh z� + C−
i �z�P2

−r�tanh z� , �22�

where

C±
i �z� = ±

�m exp��1 − r2��/�m − 1��
2 sin �r


 P2
r�tanh z�
cosh z

dz

= ±
�m exp��1 − r2��/�m − 1��

2 sin �r

 P2

r�y�
�1 − y2

dy . �23�

The computation of the integral in Eq. �23� gives

C±
i = ±

�m exp��1 − r2���/�m − 1�
2��3 ± r�sin �r

�3�I3
�r+3�/2�w�

− 2I3
�r+1�/2�w� + I3

�r−1�/2�w�� ± 3p�I2
�r+1�/2�w�

− I2
�r−1�/2�w�� + �r2 − 1�I1

�r−1�/2�w�� , �24�

where w= �1+y� / �1−y�= �1+tanh z� / �1−tanh z�, and

In
��w� =
 w�

�w + 1�ndw =
w1+�

1 + �
2F1�n,1 + �;2 + �;− w� .

�25�

Here 2F1 is a confluent hypergeometric function. Thus, the
general solution of the problem reads

u�z� = �C+
h + C+

i �P2
r�tanh z� + �C−

h + C−
i �P2

−r�tanh z� .

�26�

Condition �20� leads to following values of the coeffi-
cients:

C+
h = −

�m exp��1 − r2��/�m − 1��
2��3 + r�sin �r

��1 − r2�
2

sec
�r

2
,

C−
h = 0. �27�

Finally, applying the condition u�0�=1 to Eqs. �24�, �26�, and
�27�, and using the properties of the � function and hyper-
geometric functions �8�, one arrives at the following relation:

m exp��1 − r2��/�m − 1��
2r�4 − r2� 3r +

r2 − 1

2
��� r + 1

4
	

− �� r + 3

4
	�� = 1, �28�

where ��x�=���x� /��x� is the logarithmic derivative of the
� function. Equation �28� describes the dependence of the
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growth rate on the control parameter for both subcritical and
supercritical regions in an implicit form.

b. Stability of localized solutions under control without
delay. First, let us consider the case of undelayed control,
�=0. In this case,

m

2r�4 − r2�3r +
r2 − 1

2
��� r + 1

4
	 − �� r + 3

4
	�� = 1.

�29�

For monotonic disturbances �real r�, the dependence m�r�
can be found explicitly; it is shown in Figs. 1 and 2. One can
see that for any m�2 there are two values of r, one of which
is larger than 1. This means that the localized solutions in the
subcritical region, as well as the upper branch of the local-
ized solutions in the supercritical region are
unstable.

In the region 2�m�m*=2.02193, both values of r are
real and less than 1. For m�m* the two eigenvalues r are
complex conjugate, with Re�r2��1 �see Fig. 2�. For large m,
the leading order terms of the asymptotic expansion for r�m�
can be written in the form

r =
��m − 4�

4
e−��m−5/2 + i�m − 5. �30�

Hence, the stability condition Re�r2��1 is not violated in
this case.

Therefore, the lower branch of the localized solutions in
the supercritical region is stable in the whole region of its

existence, m�2, i.e., for p��2. The stability of the local-
ized solutions under the global control was recently observed
in numerical simulations �5�. Note that the neutral distur-
bance �r=1� corresponding to the merging point of the two
branches �m=2� can be expressed by means of elementary
functions, u�z�=sech z−z sinh z sech2 z.

c. Stability of localized solutions under delayed
control. Let us consider now the case of delayed control, �
�0, described by Eq. �28�. Obviously, the monotonic stabil-
ity boundary r2=1 is not changed by the delay. Hence, the
boundary between monotonically stable and monotonically
unstable solutions m=2 is unchanged. Therefore, the local-
ized solutions at the upper branch are unstable. However, the
delay can produce an oscillatory instability of the supercriti-
cal localized solution corresponding to the lower branch. A
typical dependence of the growth rate 
 on the delay param-
eter � for a fixed value of p is shown in Fig. 3. The growth
rate of a monotonic mode cannot cross the value 
=0 at a
finite value of � but the real part of the growth rate of the
oscillatory mode does cross zero. Note that for sufficiently
large � the pair of complex conjugate eigenvalues with
Re�
��0 is transformed into a pair of real positive eigen-
values, i.e., the instability of the stationary localized solution
becomes monotonic.

The region of stability of the localized solution is shown
in Fig. 4 bounded by the solid line. The end point of the
oscillatory instability boundary �marked by a star� corre-
sponds to p=�2 and �= �1−ln 2� /3�0.102. For p→�, �
→� /2.

IV. NUMERICAL SIMULATIONS

We have performed numerical simulations of Eq. �3� with
delayed control term, by means of a pseudospectral code
with periodic boundary conditions and time integration in
Fourier space, using Crank-Nicholson scheme for the linear
operator and Adams-Bashforth one for the nonlinear one.
Figure 5�a� shows the spatiotemporal diagram of the solution
for the parameter values inside the stability domain �see Fig.
4�. One observes the formation of a stationary localized so-
lution after transient oscillations. With the increase of the
delay above the critical value �c�p� �solid line in Fig. 4�, the
localized solution becomes unstable with respect to oscilla-

0.5 1 1.5 2
r

0.5

1

1.5

2

m

FIG. 1. Dependence m�r� defined by Eq. �29�.

0.7 0.8 0.9 1.1

Re(r)

1.8

1.9

2.1

2.2

2.3

m

FIG. 2. Real parts of r�m� defined by Eq. �29� for m�m* �two
real eigenvalues� and m�m* �two complex conjugate eigenvalues�.

0.2 0.4 0.6 0.8 1 1.2 1.4
Τ

0.5

1

1.5

2

2.5

Re�Σ�,Im�Σ�

FIG. 3. Typical dispersion curves defined by Eq. �28�, showing
the real part �solid lines� and imaginary part �dashed line� of the
perturbation growth rate 
 as functions of the control delay �.
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tory instability leading to the formation of an oscillating lo-
calized pulse. The formation of such pulse is shown in Fig.
5�b�.

Figure 6�a� shows examples of phase portraits of the os-
cillations at the pulse maximum for different values of the
delay for a fixed value of the control parameter, p=5.0. One
can see that when the delay passes through the critical value
�c, the oscillation amplitude increases as ��−�c�1/2 �see Fig.
6�b�� and then further grows with the increase of � until the
solution blows up for ���b. A similar scenario occurs for
smaller values of the control parameter p. We have found
that stable oscillating pulses are formed for p� p*�2.022
and �c�p�����b�p�. The boundary �b�p� is shown in Fig. 4
by the dashed line. We have also found that for p� p* the

solution either tends to a stationary localized solution �4�–�6�
for ���c�p� or blows up for ���c�p�.

Figure 7 shows the oscillations of the pulse maximum for
two values of the control parameter p, and delay � right near
the blow-up boundary �b. One can see that for smaller values
of p the oscillations look like a limit cycle whereas for larger
values of p, near the blow-up point, the oscillations resemble
a homoclinic loop originating from zero. Indeed, in this case,
as one can see from Fig. 7, the oscillation period increases
and the system spends large time near the point �A � =0. Ap-
parently, blow up is caused by the disappearance of the
stable limit cycle solution. We have found that the oscillation
amplitude near the blow-up boundary decreases sharply with
p approaching the critical point p*, and the minimal ampli-
tude approaches zero �becomes less than 0.005� for p� ph
�3.5.

Thus, we suggest the following bifurcation scenario. For
p� p*�2.022 �shown in Fig. 4 by a circle� the stationary
localized solution exhibits subcritical Hopf bifurcation at �
=�c�p� and the solution blows up at ���c�p�. For p� p* the
stationary localized solution exhibits a supercritical Hopf bi-
furcation at �=�c�p� which leads to the formation of an os-
cillating localized pulse for ���c�p� that corresponds to a

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

τ

p

stationary

localized solution

pulse

blow−up

no localized solution

oscillating

FIG. 4. Stability boundary of the localized solution �4�–�6� for
s=1 �solid line�, and the blow-up boundary of the oscillating solu-
tion resulting from the oscillatory instability of the solution �4�–�6�
�dashed line�. The star corresponds to p=�2 and �= �1−ln 2� /3.
The circle corresponds to the merge point of the stability and the
blow-up boundary found numerically p�2.022, ��0.929. The
square at p�3.5, ��1.575 corresponds to the formation of a ho-
moclinic cycle. Dotted line corresponds to p=�2 below which no
localized solutions exist.

FIG. 5. Spatiotemporal diagrams of numerical solutions of Eq.
�3� for p=5.0 and �a� �=1.4 �stationary localized solution�, �b� �
=1.9 �oscillating localized pulse�. The amplitude �A� is shown.

0 0.5 1 1.5
−0.2

−0.1
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0.1

|A|

d|
A

|/d
t

a)

1.4 1.6 1.8 2
0

0.2

0.4
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0.8

1

1.2

1.4

τ

∆
|A

|

b)

FIG. 6. Results of numerical simulations of
Eq. �3� showing: �a� phase portrait of oscillating
localized pulses for p=5.0 and �=1.47,1.48,
1.5,1.6,1.7,1.8,1.9,1.948,1.950,1.951; the val-
ues of �A� correspond to the spatial location of the
pulse maximum. �b� amplitude of an oscillating
localized pulse, ��A�, as a function of delay �.

STABILITY OF LOCALIZED SOLUTIONS IN A… PHYSICAL REVIEW E 75, 046213 �2007�

046213-5



stable limit cycle. With further increase of �, for ���b�p�,
this solution disappears leading to a blow-up by two possible
scenarios, depending on the control parameter p. For p*� p
� ph�3.5 �shown by a square in Fig. 4� the oscillating lo-
calized solution disappears as a result of the saddle-node
bifurcation when the stable and unstable limit cycles merge.
For p� ph and ���b the solution blows up as a result of a
homoclinic bifurcation.

V. CONCLUSIONS

We have investigated the dynamics of subcritically un-
stable pattern forming systems under the action of a delayed
global feedback control within the framework of the con-
trolled Ginzburg-Landau equation for the pattern envelope
function �3�. The control is based on the measurement of the
pattern maximum amplitude. We have shown that the feed-
back control stabilizes a stationary localized solution of Eq.
�3� determined by Eqs. �4�–�6� that leads to formation of
spatially localized patterns. The localized solution can exist
only if the value of the control parameter is larger than �2.
We have performed a linear stability analysis of this solution
and obtained an analytic dispersion relation �28� that deter-
mines the perturbation growth rate on the values of the con-
trol strength and delay. The linear stability analysis shows
that with the increase of delay, for ���c�p�, the stationary

localized solution exhibits an oscillatory instability leading
to the formation of spatially localized oscillating pulses cor-
responding to localized oscillating patterns. The stability
boundary �c�p� is found analytically. We have performed nu-
merical simulations of Eq. �3� that confirmed these conclu-
sions. By means of numerical simulations we have found
that the formation of delay-driven localized oscillating pulses
is possible for p� p*�2.022 by a supercritical Hopf bifur-
cation. For p� p* the bifurcation is subcritical and the solu-
tion blows up for ���c. We have also shown that for p
� p* the oscillatory localized pulses are stable for �c�p���
��b�p�. For ���b�p� the solution blows up and the blow-up
boundary �b�p� is found numerically. We have observed that
for p� ph�3.5 the blow-up results from the merge of stable
and unstable limit cycles �saddle-node bifurcation� and for
p� ph it results from the transformation of a stable limit
cycle into a homoclinic loop.
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FIG. 7. Oscillations of the localized pulse
maximum right near the blow-up boundary for
p=2.2, �=1.0382 �a�, �b� and p=5.0, �=1.949
�c�, �d�; for p=2.2, �b=1.0384 and for p=5.0,
�b=1.9514.
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